• 主页
  • 特氟龙紧固件
  • 单梁起重机
  • 食堂消费机
  • 主页 > 单梁起重机 >

    手持式红外测温仪的测试流程以及应用案例

      发布时间:2018-03-18 06:55

      红外光也叫红外线,它是一位英国科学家发现的。1800年,赫胥尔在研究太阳光时,让光通过棱镜分解为彩色光带,他用温度计去测量光带中不同颜色所含的热量。试验中,他偶然发现一个奇怪的现象:放在光带红光外的一支温度计,比室内其他温度的指示数值高。

      经过反复试验,这个所谓热量最多的高温区,总是位于光带最边缘处红光的外面。于是他宣布太阳发出的辐射中除可见光线外,还有一种人眼看不见的热线,这种人的肉眼看不见的热线位于红色光外侧,叫做红外线。(不过,要说明的是,事实上太阳发出的能量以波长580nm的绿光最强。)

      红外线是一种电磁波,具有与无线电波及可见光一样的本质。红外线m之间,位于无线电波与可见光之间。任何物体,只要它的温度比零下273度高,就无一例外地发射出红外线。

      在自然界中,一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射能量的大小及其按波长的分布 -- 与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。

      光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内疗的算法和目标发射率校正后转变为被测目标的温度值。除此之外,还应考虑目标和测温仪所在的环境条件,如温度、气氛、污染和干扰等因素对性能指标的影响及修正方法。

      黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1。应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。

      物体发射率对辐射测温的影响:自然界中存在的实际物体,几乎都不是黑体。所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法、热过程以及表面状态和环境条件等因素有关。因此,为使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。

      当用红外辐射测温仪测量目标的温度时首先要测量出目标在其波段范围内的红外辐射量,然后由测温仪计算出被测目标的温度。单色测温仪与波段内的辐射量成比例;双色测温仪与两个波段的辐射量之比成比例。

      性能指标方面,如温度范围、光斑尺寸、工作波长、测量精度、响应时间等;环境和工作条件方面,如环境温度、窗口、显示和输出、保护附件等;其他选择方面,如使用方便、维修和校准性能以及价格等,也对测温仪的选择产生一定的影响。随着技术和不断发展,红外测温仪最佳设计和新进展为用户提供了各种功能和多用途的仪器,扩大了选择余地。

      测温范围是测温仪最重要的一个性能指标。如产品覆盖范围为-50℃-+3000℃,但这不能由一种型号的红外测温仪来完成。每种型号的测温仪都有自己特定的测温范围。因此,用户的被测温度范围一定要考虑准确、周全,既不要过窄,也不要过宽。根据黑体辐射定律,在光谱的短波段由温度引起的辐射能量的变化将超过由发射率误差所引起的辐射能量的变化,因此,测温时应尽量选用短波较好。一般来说,测温范围越窄,监控温度的输出信号分辨率越高,精度可靠性容易解决。测温范围过宽,会降低测温精度。例如,如果被测目标温度为1000℃,首先确定在线式还是便携式,如果是便携式。满足这一温度的型号很多,如Ti315,Ti213等。

      红外测温仪根据原理可分为单色测温仪和双色测温仪(辐射比色测温仪)。对于单色测温仪,在进行测温时,被测目标面积应充满测温仪视场。建议被测目标尺寸超过视场大小的50%为好。如果目标尺寸小于视场,背景辐射能量就会进入测温仪的视声符支干扰测温读数,造成误差。相反,如果目标大于测温仪的视场,测温仪就不会受到测量区域外面的背景影响。对于双色测温仪,其温度是由两个独立的波长带内辐射能量的比值来确定的。因此当被测目标很小,没有充满现场,测量通路上存在烟雾、尘埃、阻挡对辐射能量有衰减时,都不会对测量结果产生影响。甚至在能量衰减了95%的情况下,仍能保证要求的测温精度。对于目标细小,又处于运动或振动之中的目标;有时在视场内运动,或可能部分移出视场的目标,在此条件下,使用双色测温仪是最佳选择。如果测温仪和目标之间不可能直接瞄准,测量通道弯曲、狭小、受阻等情况下,双色光纤测温仪是最佳选择。这是由于其直径小,有柔性,可以在弯曲、阻挡和折叠的通道上传输光辐射能量,因此可以测量难以接近、条件恶劣或靠近电磁场的目标。

      光学分辨率由D与S之比确定,是测温仪到目标之间的距离D与测量光斑直径S之比。例如红外时代的手持式红外测温仪Ti213,距离系数为80:1,如果距目标80厘米远,那么测量范围的直径是1厘米。如果测温仪由于环境条件限制必须安装在远离目标之处,而又要测量小的目标,就应选择高光学分辨率的测温仪。光学分辨率越高,即增大D:S比值,测温仪的成本也越高。

      目标材料的发射率和表面特性决定测温仪的光谱响应或波长。对于高反射率合金材料,有低的或变化的发射率。在高温区,测量金属材料的最佳波长是近红外,可选用0.18-1.0m波长。其他温区可选用1.6m、2.2m和3.9m波长。由于有些材料在一定波长是透明的,红外能量会穿透这些材料,对这种材料应选择特殊的波长。如测量玻璃内部温度选用10m、2.2m和3.9m(被测玻璃要很厚,否则会透过)波长;测量玻璃内部温度选用5.0m波长;测低区区选用8-14m波长为宜;再如测量聚乙烯塑料薄膜选用3.43m波长,聚醋类选用4.3m或7.9m波长。厚度超过0.4mm选用8-14m波长;又如测火焰中的C02用窄带4.24-4.3m波长,测火焰中的C0用窄带4.64m波长,测量火焰中的N02用4.47m波长。

      响应时间表示红外测温仪对被测温度变化的反应速度,定义为到达最后读数的95%能量所需要时间,它与光电探测器、信号处理电路及显示系统的时间常数有关。新型红外测温仪响应时间可达1ms。这要比接触式测温方法,快得多。如果目标的运动速度很快或测量快速加热的目标时,要选用快速响应红外测温仪,否则达不到足够的信号响应,会降低测量精度。然而,并不是所有应用都要求快速响应的红外测温仪。对于静止的或目标热过程存在热惯性时,测温仪的响应时间就可以放宽要求了。因此,红外测温仪响应时间的选择要和被测目标的情况相适。

      鉴于离散过程(如零件生产)和连续过程不同,所以要求红外测温仪具有多信号处理功能(如峰值保持、谷值保持、平均值)可供选用,如测温传送带上的瓶子时,就要用峰值保持,其温度的输出信号传送至内。否则测温仪读出瓶子之间的较低的温度值。若用峰值保持,设置测温仪响应时间稍长于瓶子之间的时间间隔,这样至少有一个瓶子总是处于测量之中。

      测温仪所处的环境条件对测量结果有很大影响,应予考虑并适当解决,否则会影响测温精度甚至引起损坏。当环境温度高,存在灰尘、烟雾和蒸汽的条件下,可选用厂商提供的保护套、水冷却、空气冷却系统、空气吹扫器等附件。

      这些附件可有效地解决环境影响并保护测温仪,实现准确测温。在确定附件时,应尽可能要求标准化服务,以降低安装成本。当在噪声、电磁场、震动或难以接近环境条件下,或其他恶劣条件下,烟雾、灰尘或其他颗粒降低测量能量信信号时,光纤双色测温仪是最佳选择。在噪声、电磁场、震动和难以接近的环境条件下,或其他恶劣条件时,宜选择光纤比色测温仪。

      在密封的或危险的材料应用中(如容器或真空箱),测温仪通过窗口进行观测。材料必须有足够的强度并能通过所用测温仪的工作波长范围。还要确定操作工是否也需要通过窗口进行观察,因此要选择合适的安装位置和窗口材料,避免相互影响。在低温测量应用中,通常用Ge或Si材料作为窗口,不透可见光,人眼不能通过窗口观察目标。如操作员需要通过窗口目标,应采用既透红外辐射又透过可见光的光学材料,如应采用既透红外辐射又透过可见光的光学材料,如ZnSe或BaF2等作为窗口材料。

      当测温仪工作环境中存在易燃气体时,可选用本征安全型红外测温仪,从而在一定浓度的易燃气体环境中进行安全测量和监视。

      在环境条件恶劣复杂的情况下,可以选择测温头和显示器分开的系统,以便于安装和配置。可选择与现行控制设备相匹配的信号输出形式。

      红外测温技术在生产过程中,在产品质量控制和监测,设备在线故障诊断和安全保护以及节约能源等方面发挥了着重要作用。近20年来,非接触红外测温仪在技术上得到迅速发展,性能不断完善,功能不断增强,品种不断增多,适用范围也不断扩大,市场占有率逐年增长。国产的优势在与性价比高,相对进口的价格低,售后方便快捷。比起接触式测温方法,红外测温有着响应时间快、非接触、使用安全及使用寿命长等优点。非接触红外测温仪包括便携式、在线式和扫描式三大系列,并备有各种选件和计算机软件,每一系列中又有各种型号及规格。在不同规格的各种型号测温仪中,正确选择红外测温仪型号对用户来说是十分重要的

      热风炉拱顶是一种特殊的场合,拱顶温度的测量既要解决被测目标的高温、高压问题、又要适应一年四季露天环境变化的要求。我们经过反复实践改进,设计了一套带有密封窗的专用保护装置。其使用方法是将装有保护装置的红外探头,固定安装在拱顶上原来插热电偶的位置上,使探头能通过密封窗口和热电偶插孔,瞄准热风炉内部,测得热风炉拱顶的温度,探头信号经电缆送至安装于控制柜上的仪表箱处理后,显示温度值,并输出4-20mA标准电流信号,送记录仪或计算机进行处理。由于本系统的红外探头不接触高温目标,故具有稳定可靠,使用寿命长的特点,通常可以连续运行五年以上,可以减小热电偶消耗,大大降低设备运行成本和维护工作量。

      本系统的测温装置与拱顶测温系统基本相似,将配有保护装置的红外探头安装在热风管道原来热电偶的插孔上,将红外探头透过保护装置的密封窗,再经原电偶的插孔,瞄准热风管道内部,从而测得热风管道内部的温度。由于本系统的测温探头安装在密封窗外边,整个测温系统与管内热风完全隔离,故本系统在调换探头或维护工作都可以在不影响管内热风工作状态的情况下进行。而原来常用的热电偶必须在休风状态下调换,加上热电偶属易耗品,损坏较频繁。本测温系统能减少热电偶消耗,降低设备的运行成本。

      亚泰光电红外测温仪测量炉前铁水的方法是:将装有吹风套的红外测温探头固定安装在距铁水5-15米的支架上,并且瞄准铁水沟,对每炉铁水进行连续扫瞄测量,其探头测得的温度信号接记录仪打印温度曲线或送计算机进行数据处理。本系统最大的优点就是能对每炉铁水温度进行自动连续测量,能有效避免人工插入测温法带来人为因素的影响。通过分析记录的温度曲线或计算机处理信息,能较真实地反映出每炉铁水温度的变化趋势,直观地读出每炉的最高温度,为生产管理和工艺改进提供有力的依据。该系统已有鄂钢、首钢等单位使用,并取得用户的好评。

      本公司主营 不锈钢采水器,罐底焊缝真空检测盒,读数仪,八级空气微生物采样器,继电器综合测试仪,双波长扫描仪,涂层测厚仪,土壤粉碎机,钢化玻璃表面平整度测试仪,声音传感器,便携式电测水位计,网口流量计,腐蚀率仪,便携式划痕仪,凝固点测试仪,水质检测仪,在线氨气测试仪,涂层测厚仪,涂层测厚仪,土壤粉碎机,数显式温度计,气体采样泵,陶瓷抗冲击试验机,全自动结晶点测试仪,药物凝固点测试仪,干簧管测试仪,恒温水浴箱,汽油根转,气体采样泵,钢化玻璃测试仪,水质检测仪,PM2.5测试仪,可吸入颗粒物检测仪,高频热合机,应变控制三轴仪,牛奶体细胞检测仪,氦气浓度检测仪,土壤水分电导率测试仪,场强仪,采集箱,透色比测定仪,毛细吸水时间测定仪,氧化还原电位计 测振仪,一氧化碳二氧化碳检测仪,CO2分析仪,示波极谱仪,黏泥含量测试仪,汽车启动电源,自动电位滴定仪,便携式测温仪,氧化锆分析仪,干簧管测试仪,精密电导率仪,TOC水质分析仪,微电脑可塑性测定仪,风向站,全自动点样仪,土壤氧化还原电位计,数字测温仪,便携式总磷测试仪,腐蚀率仪,恒温水浴箱,余氯检测仪,自由膨胀率仪,离心杯,混凝土饱和蒸汽压装置,颗粒强度测试仪,高斯计,自动涂膜机,安全阀研磨工具,气象站,动觉方位仪,暗适应仪,气味采集器,雨量计,四合一气体分析仪,乳化液浓度计,溶解氧仪,温度测量仪,薄层铺板器,温度记录仪,老化仪,噪音检测仪,恒温恒湿箱,分体电阻率测试仪,初粘性和持粘性测试仪,红外二氧化碳分析仪,氢灯,动觉方位仪,恒温动物手术台,冷却风机,油脂酸价检测仪,粘数测定仪,菌落计数器,气象站,雨量计,凯氏定氮仪,荧光增白剂,公司秉承“顾客至上,锐意进取”的经营理念,坚持“客户第一”的原则为广大客户提供优质的服务。欢迎惠顾!

    上一篇:福禄克超级精密测温仪的10大理由
    下一篇:没有了